Multiscale boundary conditions in crystalline solids: Theory and application to nanoindentation

نویسندگان

  • E. G. Karpov
  • H. Yu
  • Wing Kam Liu
  • Jane Wang
  • D. Qian
چکیده

This paper presents a systematic approach to treating the interfaces between the localized (fine grain) and peripheral (coarse grain) domains in atomic scale simulations of crystalline solids. Based on Fourier analysis of regular lattices structures, this approach allows elimination of unnecessary atomic degrees of freedom over the coarse grain, without involving an explicit continuum model for the latter. The mathematical formulation involves compact convolution operators that relate displacements of the interface atoms and the adjacent atoms on the coarse grain. These operators are defined by geometry of the lattice structure, and interatomic potentials. Application and performance are illustrated on quasistatic nanoindentation simulations with a crystalline gold substrate. Complete atomistic resolution on the coarse grain is alternatively employed to give the benchmark solutions. The results are found to match well for the multiscale and the full atomistic simulations. 2005 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A FEM Multiscale Homogenization Procedure using Nanoindentation for High Performance Concrete

This paper aims to develop a numerical multiscale homogenization method for prediction of elasto-viscoplastic properties of a high performance concrete (HPC). The homogenization procedure is separated into two-levels according to the microstructure of the HPC: the mortar or matrix level and the concrete level. The elasto-viscoplastic behavior of individual microstructural phases of the matrix a...

متن کامل

A multiscale coupling method for the modeling of dynamics of solids with application to brittle cracks

We present a multiscale model for numerical simulations of dynamics of crystalline solids. The method combines the continuum nonlinear elasto-dynamics model, which models the stress waves and physical loading conditions, and molecular dynamics model, which provides the nonlinear constitutive relation and resolves the atomic structures near local defects. The coupling of the two models is achiev...

متن کامل

A temperature-related homogenization technique and its implementation in the meshfree particle method for nanoscale simulations

A new homogenization technique, the temperature-related Cauchy–Born (TCB) rule, is proposed in this paper with the consideration of the free energy instead of the potential energy. Therefore, temperature effects at the nanoscale can be investigated using continuum approximation with the implementation of the TCB rule. The TCB rule is verified via stress analyses of several crystalline solids. T...

متن کامل

Effects of Crystalline Anisotropy and Indenter Size on Nanoindentation by Multiscale Simulation

Nanoindentation processes in single crystal Ag thin film under different crystallographic orientations and various indenter widths are simulated by the quasicontinuum method. The nanoindentation deformation processes under influences of crystalline anisotropy and indenter size are investigated about hardness, load distribution, critical load for first dislocation emission and strain energy unde...

متن کامل

Temperature-related Cauchy–Born rule for multiscale modeling of crystalline solids

In this study, we develop a temperature-related Cauchy–Born (TCB) rule for multiscale modeling of crystalline solids based on the assumptions that deformation is locally homogeneous and atoms have the same local vibration mode. When employing the TCB rule in the nanoscale continuum approximation, the first Piola–Kirchhoff stress can be explicitly computed as the first derivative of the Helmholt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006